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Transport properties of random media: An energy-density CPA approach
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We present an approach for efficient, accurate calculations of the transport properties of random media. It is
based on the principle that the wave energy density should be uniform when averaged over length scales larger
than the size of the scatterers. This method captures the effects of the resonant scattering of the individual
scatterer exactly, and by using a coated sphere as the basic scattering unit, multiple scattering contributions
may be incorporated in a mean-field sense. Its application to both “scalar” and “vector” classical waves gives
exact results in the long-wavelength limit as well as excellent agreement with experiment for the mean free
path, transport velocity, and the diffusion coefficient for finite frequencies. Furthermore, it qualitatively and
quantitatively agrees with experiment for all densities of scatterers and contains no adjustable parameter. This
approach is of general use and can be easily extended to treat different types of wave propagation in random
media.[S0163-182606)05626-3

I. INTRODUCTION tion, starting from the Bethe-Salpeter equation. In addition,
experimental resulfdor alumina spheres have shown that as
The study of waves propagting in strongly scattering ranthe volume fraction of the scattererk, increases towards
dom media is a subject with a long and rich history. How-close packing {=0.60, there is no structure in the diffusion
ever, until recently the interest of the physics communitycoefficient versus frequency. This clearly suggests that there
was primarily focusing on quantum, i.e., electronic, waves. Itis no structure in the transport velocity. This behavior is not
was the observation of the coherent backscattering effect inbserved when extending the low-density theory of van Al-
classical wave systemshe analogous effect to weak local- badaet al. to this high{ regime. It is by now well under-
ization in the electronic case, which triggered a burst of instood that tolowest order in the densitpf the dielectric
terest in further studies of strongly scattering disordered classcatterers, the strong decrease in the transport velocity is due
sical wave systemsAlthough the analogy between quantum to the(single-scattereMie resonances. For higher values of
and classical waves works reasonably well, the localizationhe density, multiple scattering corrections become appre-
of classical waves has not been observed as yet, despite tbiable and tend to wash out the single-scatterer resonances,
fact that recent experimental res@lteported very low val- as observed experimentally.
ues for the diffusion coefficienD. In fact, it was already In the spirit of the coherent-potential approximation
realized in the work of van Albadat al? that, unlike elec- (CPA) a conceptually different approach to the problem of
tronic systems, there exists another renormalization mechalassical wave propagation in strongly scattering random me-
nism of the diffusion coefficierd in classical wave systems. dia was recently develop&and obtained a CPA velocity
Using a scalar Bethe-Salpeter equation in the low-densityor f=0.60, which is qualitatively consistent with experi-
regime, van Albadat al? were able to show that the pres- ment, in not showing any structure as a function of the fre-
ence of resonant scatterers may cause the transport velocigyiency. Not surprisingly, the newly develop@doated CPA
ve to decrease sharply close to the single-scatterer resder low f gives a CPA velocity which reduces to the regular
nances. This renormalization of the diffussion coefficiBnt phase velocity which is higher than the velocity of light near
(Refs. 3—9 can be viewed as either being the result of aMie resonances. This is an undesirable feature of the CPA
different Ward Identity due to an energy-dependent scatterwhich can be understood to be the result of underestimating
ing potential or being caused by a scattering delay due to thithe above-mentioned energy-storage effect. Thus, for small
storage of wave energy inside a single scatterer. Thereforé, the theory of van Albadat al? seems to give the correct
considerable care has to be exerted when interpreting lowansport velocity ¢, while for largef, it is the coated CPA
values of the diffusion coefficie =vg/;/3, since only low  approact’!! which seems to give transport properties con-
values of the transport mean free pattsignify localization.  sistent with experimert.
To further extend their results to the vector case, van Albada In the present paper, we report the details of an
et al. simply replaced the single-scattetematrix with the  approacf? for calculating the transport properties of random
vectort matrix. However, this is an oversimplified approxi- media that takes into account the multiscattering effects in a
mation to the real vector problem. The polarizations of themean-field sense. It can be applied to all cases of classical
electromagneti¢€EM) waves have to be taken into account in wave propagation in random media, such as aco(st&iaj,
a fully vector calculation in deriving the Boltzmann equa- EM (vecton, and elastic(tensoj waves. Furthermore, this
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FIG. 1. (@ In a random medium composed of dielectric spheres, the basic scattering unit may be regarded as a coated sphere, as
represented by the dashed lines. To calculate the effective dielectric comst@rioated sphere of radilg.=R/fY3, is embedded in a
uniform medium. The self-consistent condition for the determinatioa isfthat the energy of a coated sphébgis equal to the energy of
a sphere with radiuR. and dielectric constarg (c).

approach gives results which are in qualitative agreemertteen chosen. This procedure manifests the homegenity of the
with experiment forall densities of scatteres. The paper israndom medium on average. In conventional effective me-
organized as follows. In Sec. Il we give a detailed descripdium theories, such as the CPA, the effective medium is
tion of our general method for scalar and vector waves, emdetermined by demanding that the total cross sedfi®S)
phasizing the conceptual difference from the conventionabf the difference between scattering medium and the effec-
CPA. For the long-wavelength limit, analytical results aretive medium vanishes on averatjen the effective medium
presented in Sec. lll, whereas the numerical results for finitgne energy density is homogeneous by construction.
frequencies are discussed in Sec. IV. Finally, Sec. V is de- However, the position of a sphere in the medium is com-

voted to a discussion of the results. pletely random, with the exception that the spheres cannot
overlap. This implies that the distribution of spacings be-
Il. MODEL AND METHOD OF CALCULATION tween neighboring spheres is peaked at a distatceR.

We consider a composite medium of two lossless materi] "erefore, we may consider a coated sphere as the basic
als, with dielectric constants, and e,. Our medium is as- Scattering unit (Sf' Fig. 1. The radiusR. of the coated
sumed to consist of spheres with diameter2R and dielec- sphere iR,=R/f3 The dielectric constants of the core and
tric constante; randomly placed within the host material the coat aree; and e,, respectively. This procedure also
with dielectric constant,. The random medium is charac- incorporates some of the multiple scattering effects at differ-
terized also byf, the volume fraction occupied by the ent centers. With this technique it is, therefore, possible to
spheres. The basic idea of effective medium theory is t®btain reliable information about transport properties for the
focus on one particular scatterer and to replace the surroung¢hole range of disorder, as has been demonstrated in recent
ing random medium by an effective homogeneous mediumworks!®-1-1°
The effective medium is determined self-consistently by tak- The use of a coated sphere as the basic scattering unit also
ing into account the fact that any other scatterer could havemplies that the homogeneity of the energy density is not
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anymore trivially fulfilled. If we, nevertheless, apply the N LT VB2 (5|2

ide)fals of the con)\//entional CPA to this new structurglpalnit we pe(r)= 2 [eMIEMIT+ulHMIT, ®
obtain excellent agreement with experiments for quantitiesvhere . is the magnetic permeability which is taken to be
not directly related to the energy density, i.e., for scatteringhe same in both materials. Consequently, Bqg.together
and transport mean free pdfht! In contrast, quantities de- with either Eq.(2) or Eq.(3) determines thérea)) dielectric
scribing energy transport, i.e., the energy transport velocitgonstante of the effective medium for every frequency. As
and diffusion coefficient, show good agreement with experimentioned above the energy transport velooityis identi-
ment for small coating, i.e., for high disorder, but are prob-fied with the so-called phase velocity, (Ref. 14 and the

lematic for small disorder as they give unphysical resultsscattering mean free patfy can be calculated VA
close to the single-scatterer Mie resonances, although still
being qualitatively correct. In addition, the computational ef-

c
fort turns out to be quite formidable due to serious conver- ve=vp="=V1-Re2)/K?, (4)
gence problems. €
This unphysical behavior may be directly attributed to an
inhomogeneous energy density, especially for large coating, /o= 1 {[F— REY)]
i.e., small disorder. In the present approach we, therefore, s \/Elm(E)
explicitly choose the averaged energy density homogeneity
as the criterion for the effective medium. Since we are ex- +V[K*—Re3)2+[Im(2)]1212, (5)

clusively considering lossless dielectrics, our effective me- —

dium dielectric constant has to be real due to energy conseivhere k= Jew/c. Re(®) and ImE) denote the real and
vation. This is in contrast to the conventional approches andmaginary parts of the self-energy, respectively. In the
consequently, we have to proceed in two steps: First, wédependent scatterer approximation the self-eneXgys
determine for every frequenay the real effective dielectric given by

constante by demanding thenergy density to be homoge-

neous on scales larger than the basic scattering.uHien, 2 =4mnf(0). ®)

in a second step, the physical quantities are calculated fromere, f(0) denotes the forward scattering amplitude for a
the (nonvanishing scattering cross section of the resulting coated sphere embedded in the effective medium and

arrangement of coated sphere and effective medium. ~ 1—1/R3 js the density of scatterers. For scalar waves we
Since in the above-mentioned arrangement the effectivg o

medium dielectric constant is real and the energy density is

homogenous on scales larger than the basic scattering unit, P =

the energy transport velocity: may now be identified with f(0)= ——_2 (21+1)D,, @)
the phase velocity,. v, in turn, is determined by the TCS k =0

of the above-mentioned arrangement. In fact, for the Scala\R/hereas for vector waves it is

case our results farg agree remarkably well with the results

of a similar spirited approach by Jireg al* However, our .

approach can just as easily treat the vector case for which f(0)=— __E (21+1)(A+B)). )
even a low-density solution of the corresponding vector- 2k =1

Bethe-Salpeter equation is absent to date. Jhe scattering coeffcient3,, A,, andB, for a coated sphere

The requirement that the energy content of a coate . : .
: . . . . re given in Ref. 14 for scalab() and in Ref. 16 for vector
sphere embedded in the effective medium and being hit by \%aves @, and B). Since the right-hand side of E1) is

g:ggg \\/Ivv:\\//: izhtﬁgli at;r?etcglusr?]r:%fa}[z etr:;f ee cr][i/rg);nset(jC)iLerg ?gﬁﬁvial, it is the left-hand side which causes most of the com-

be formulated quantitatively by the self-consistency equatiorPUtational d_ifficulti.es. Fortunately, the analytica] calculations
can be carried quite far. In the scalar case, using the expres-

R R sions given in Ref. 14 for the scattered wave field, we find,
f Cd3rp(E1)(F)=f Cd3rp(E2)(F), (1)  after a good deal of cumbersome algebra, that the energy
0 0 contentE® of the coated sphere, i.e., the left-hand side of
Eqg. (1), is given by the set of equations
where p&(r) and p®(r) are the energy densities for the
coated sphere and the plane wave, respectively. Clearly, this EC=EP+EY,
very general principle can be applied to any kind of classical
wave propagation. We chose to discuss two, for practical 10?2 & , 1 (kR o0
applications very important, cases, i.e., scé&aousti¢ and Ey'=3 ?6120 EY Ffo p*dpWI¥(j1i15p),
vector(EM) classical waves. For a general scalar wave field 1
#(r) the energy density is

pe(N=3[w’eM)P(NPIC+ VYD, (2)
, _ _ X[SPWET (11 5p) + LW (ny 0y 5p)
whereas the energy density of vector waves with electric and '
magnetic fieldE(r) andH(r) is given by +2 Wiy 5p)],
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Wi¥(z1,23p) = (21+ 1)z (p)z(p) +121-1(p)21-1(p) electric constant.. according to

+(1+ 1)Z|+1(P)Z+1(P)a
vE(

B1= (KR ji(kR)N| (k2R) = (K1 7Kp) j{ (K1 RINy(KzR) ], _ _ _ _ _
The history of long-wavelength dielectric constants itself is
4= (kR Y (K1 7K2)j 1 (koR)j{ (K1R) = j | (koR) i (k:R)1, an old but, nevertheless, still very active field. To name but a
few, we mention the classic theories of ‘Bgeman’ and
wherek;=e;w/c andi=1,2.j; andn, denote the spherical Maxwell-Garnet® and the more modern works of
Bessel functions of first and second kinds, respectively. Th@ergman'® who showed that the classic theories follow from
a, are the scattering coefficients for the field inside the coreg more general expression by making specia| choices for the
Similarly, for the vector case we use the expressions in Refko-called Bergman spectral function. For the topology of our
16 and obtain for the left-hand side of K@), i.e., the energy model system, i.e., spheres of dielectric constgnémbed-
contentE) of the coated sphere, ded in a medium with dielectric constaes and a filling
) @) 4 ) fractionf of the spheres, it is well knowhthat in the scalar
EY=E +E, case the correct result foe, is given by the volume-
averaged dielectric constant, whereas in the vector case it is
Maxwell-Garnett theory which gives the right answer. To
calculatee., according to Eq(9) we have to proceed in two
steps. First, we need to calculatefor w—0 from Eq. (1)

c 2
€.= |imw%0(—w)) . 9

102 = 1 (kR o
=5 e, (af+d g [ rdswi o)

1 w? 1 [kaR; and use this result to obtain an expression dgfw) as
E<2v>= > Z€ 3 p2dp w—0. In the scalar case, a careful analysis of @ reveals
Ekelior that the leading contribution as—0 comes from thé =0
v)io . i i - 1 (s)

X[(|ci[2d2+]di2YDOW (11 ip) terms. If we abreviate the right-hand side of Eb). by E

we find for the relevant quantities
+(|c |28+ [di2nH) WP (ny .0y p)

ap=1+0(w),
+2(|¢|21 &+ |2y )W Gy unysp) ],
1 ol RS
Wi (2.23p)= (21 + D)2(p)Z(p) +(1+ )2 1(p)Z1(p) Do~ 31 Ve (2 ReH (€1~ e2)z| + (o),
+12),1(p)z+1(p), 1w
() — 3
1= 1 (KR x| (koR) — (Ko /ky) 4 (kaR) xi (KoR), B =322 ZaR0(0),
4= (kaR) ¥ (k1R) — (ko /ky) ¥ (KoR) ¢ (k3 R), 1 w?
E(ZS) 3(2 )2 252(R R3)+O(w3)
¥1=(ka/ky) x1(K2R) 1 (k1R) — x| (K2R) #1(k4R),
1 2__
= (ko 1kp) P (kaR) g (kaR) = f (koR) 1 (kqR), EC= “’_zeRg.
3(2m)?

where, againk;= \/—w/C andi=1,2. ¢ and y denote the
Ricatti-Bessel functions of first and second kinds, respecConsequently, we have that

tively. The ¢, andd, are the scattering coefficients for the

field inside the core. We want to point out that the scattering e=fert(1-e,
coefficients depend on theeal) dielectric constant of the For this value ofe it is obviously
effective medium. They can be numerically evaluated in a
way similar as described in Ref. 16. In addition, we want to Rd2)247Tan—iDO/k_)20+O((1)4),

stress the great similarity between the expressions for scalar

and vector waves. The only differencies are that—in contrasand, therefore, our final result for the long-wavelength limit
to scalar waves—the vector waves do not havesavave, in the scalar case isf. Eq.(9) and Eq.(4)]

i.e., =0, component, whereas the vector wave has two po- o

larizations(reflected by the two scattering coefficiestsand e.=e=fe+(1-fey, (10
d,). Finally, the expressions fon® and W) differ in a

o which is the well-known volume-averaged dielectric con-
very characteristic way.

stant result. A similar analysis may be carried out for the
more complicated vector case. If we, again, abreviate the
right-hand side of Eq1) by E(), we find to leading order in

If a wave with wavelength much larger than the scattere that only theE field contributes:
size and mean scatterer spacing propagates through a random
medium, it cannot resolve the disorder and, therefore, we
may define a frequency-independent, long-wavelength di-

IIl. LONG-WAVELENGTH LIMIT

2 w?
E(lv):§ 32‘61|d1|2R3+ O(w),
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where we have the following expansions for the scattering

coefficients:

9626_ 4.0 }
d,= — — +0(w?),
(26,4 €1)(2€+ €5) +2f(e2—€1)(e—€5) 20 1
1 € 0‘00,0 0:5 1t0 1:5 2:0 2?5 3.0
= _l 2 /X
71_ 3 2+ 62 +O(w )1

FIG. 2. The scattering mean free path for scalar waves, cal-
k‘;‘ culated by the effective medium theory versdis\; for alumina
71==(€,— el)—R3+ o(wﬁ), spheres with dielectric constaat=9 in vacuum €,=1) for dif-
9 €2 ferent values of the filling factof.

o 0® _(2e,+ 61)(62_6_)R§+(51_62)(ZL 26,)R® IV. FINITE FREQUENCIES
1= c? (265t €1)(2€+ €;5) + 2f(e,— €1) (e— €5) For finite frequencies, of course, no analytical solution of
5 Eq. (1) is possible. Fortunately, it turns out that EG) is
+0(w), numerically much easier to deal with than the self-
5 consistency equations of our previous approachésTo
B;=0(w”). obtain a converged result, we used a simple fixed-point itera-
tion with the long-wavelength limit as a starting value far
The convergencérelative change ofe from one iteration
step to the next being less than 1) was obtained in almost
3fa all cases with less than ten iterations. After a succesful con-
l—fa)’ vergence fore we compute the self-energy according to
Eq. (6) and then evalute Eq4) and Eq.(5) for the energy
transport velocityvg and the mean free path, respec-
a= €17 € _ tively. We chose to present these resultsdfprand /5 as a
€11 26, function of d/\;, whered is the diameter of the dielectric
spheres and\;=27c/w\e; is the wavelength inside the
sphere. The reason behind that being the fact that strong Mie
resonances of the isolated sphere appear in the limit
€,/e;— whend/\j=(n+1)/2, withn=1,23 ... for the
ReE(S)=4mnRe(—i (A + Bl)/k_)=0+0(w4), vector andn=0,1,2 ... for thescalar case. Furthermore, it
should be noted that we used different numbers of scattering
so that the final result for the long-wavelength dielectric concoeffcients in the series given B and E®. We found
stant in the vector case is the well-known Maxwell-Garnettthat increasing the maximal number of scattering coefficients
result beyond 10 does not alter the results in the rangel/of;
which we have considered.

Inserting these expressions into Ef) results in a quadratic
equation fore which has only one physical solution

€E=€)

1+

Again, just like in the scalar case, it is this particular value
for € which makes ReY) vanish up to orde©(w*) as can
be seen from the expression faj,

e —e—el14 3fa (11) Figures 2 and 3 show the scattering mean free patin
- 2 1-fa)’ units of the sphere radiuR for scalar and vector classical
waves, respectively, versul\; for the experimental setup
€1— € of Garciaet al,” which consisted of a mixture of alumina
a= €1 +2¢, spheres with dielectric constaat=9 and hollow polypro-

pylene spheres,~ 1, for different values of the filling factor
Therefore, for both scalar and vector classical waves ouf of the alumina spheres. Figures showing the energy trans-
mean-field approach gives analytically the correct long-port velocity vg for scalar and vector classical waves, re-
wavelength limit for all values of the filling factor. This is spectively, versusl/\; for the same configurations can be
certainly a clear advantage over the theory of Albatlal?>  found in Ref. 12. It can be clearly seen that for low values of
who obtained the correct value E@L1) only in the limit  the filling factorvg exhibits large dips near the Mie reso-
f—0 as well as over our previous approacfiédwhich ob-  nances which become smeared out as the filling factor in-
tained excellent agreement with Ed.1) for all f only nu-  creases. This displays the fact that due to the multiple scat-
merically. tering contributions the effective medium gets stronger



898 K. BUSCH AND C. M. SOUKOULIS 54

20.0 T 3.0 T T T T T T T
18.0 |-
25| 1
16.0 | *
><'><>(><><X><><><><><><><XXXXXXXXXXXXXXXXX.XXXXXX
14.0 | S 20f .
12.0 | ﬁ
© §
300 3 157
8.0 | &
® o0t
6.0 |
4.0 F 05 b
20 F
0o , 0.0 . . . . . . .
0.0 05 1.0 15 20 25 3.0 18 12 20 21 22 23 24 25 26
d/x v (GHz)

FIG. 3. The scattering mean free path for vector waves, FIG. 5. The frequency dependence of the energy transport ve-
calculated by the effective medium theory versiix; for alumina  10City for @ sample of 1/2-in. polystyrene spheres with index of
spheres with dielectric constast=9 in vacuum €,=1) for dif- refraction 1.59 and filling ratio 59%. The solid circles correspond to
ferent values of the filling factof. the experimental values whereas the crosses are the results of the

effective medium theory.

renormaliz incr h mpeting with the single- . :
enormalized a increases, thus competing the single good agreement between the experimental and theoretical

scatterer effects which dominate at low filling factérsThis its. both i tud d T q d
qualitative behavior has been confimred by experinient. results, bot In magnitude an overafl Irequency dependence.
To further check the effective medium scheme we Com_Howeve_r,uE is flatter thar_1 the experimental one. As for the
pare it with recent experiments of Garaal® They have comparison of the experimental mean free path and the ef-

measured the frequency dependence of microwave propagf ctive medium result, Fig. 6, there is indeed a semiquanti-

tion in a sample of 1/2-in. polystyrene spheres with index o |§&err:g£2ﬁrc?§2ti;ocz1%%;3? ltj(; tuhrf d?;gg rllrgiﬂctaaclri:ioczlllln
refraction 1.59 and filling ratio of =0.59. Their experimen- q y y:

tal results(solid circles as well as the results of our effective

medium theory(crosseg are presented in Figs. 4, 5, and 6, V. DISCUSSION
where the frequency dependences of the diffusion coefficient )
D =v//3, transport velocity ¢ and mean free path, are In summary, we have presented a scheme for calculating

shown. The relation between experimental frequen@nd the transport propertit_es of random media. This scheme cap-
d/N, is, in this casey (GH2) = 15 (d/\;). The parameters tures the effects of Mie resonances, always present in cases
useld i'n the theoretical calculations Iaw.@=2 53, e,=1 of finite scatterers, exactly and the multiple scattering contri-

f=0.59, andR=0.64 cm. It is evident that there is rather butions in a mean-field sense. It is proposed that the choice
of an effective medium is based on the principle that the
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FIG. 4. The frequency dependence of the diffusion constant for FIG. 6. The frequency dependence of the scattering mean free
a sample of 1/2-in. polystyrene spheres with index of refractionpath for a sample of 1/2-in. polystyrene spheres with index of re-
1.59 and filling ratio 59%. The solid circles correspond to the ex-fraction 1.59 and filling ratio 59%. The solid circles correspond to
perimental values whereas the crosses are the results of the effectitree experimental values whereas the crosses are the results of the
medium theory. effective medium theory.
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wave energy density should be uniform when averaged ovesical waves. In particular, the application of this method to
length scales larger than the size of the inhomogeneities. Welastic wave will be very interesting, since for this case no
have applied this effective medium theory to scalar and vectheory exists as yet.

tor waves. In both cases a careful analysis of the long-

wavelength limit rediscovers the well-known results. For fi-

nite frequencies the computational effort as compared to ACKNOWLEDGMENTS
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